Generation of Myocardial Wall Surface Meshes from Segmented MRI

نویسندگان

  • Oskar M. Skrinjar
  • Arnaud Bistoquet
چکیده

This paper presents a novel method for the generation of myocardial wall surface meshes from segmented 3D MR images, which typically have strongly anisotropic voxels. The method maps a premeshed sphere to the surface of the segmented object. The mapping is defined by the gradient field of the solution of the Laplace equation between the sphere and the surface of the object. The same algorithm is independently used to generate the surface meshes of the epicardium and endocardium of the four cardiac chambers. The generated meshes are smooth despite the strong voxel anisotropy, which is not the case for the marching cubes and related methods. While the proposed method generates more regular mesh triangles than the marching cubes and allows for a complete control of the number of triangles, the generated meshes are still close to the ones obtained by the marching cubes. The method was tested on 3D short-axis cardiac MR images with strongly anisotropic voxels in the long-axis direction. For the five tested subjects, the average in-slice distance between the meshes generated by the proposed method and by the marching cubes was 0.4 mm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm

Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...

متن کامل

Bayesian Segmentation of Atrium Wall Using Globally-Optimal Graph Cuts on 3D Meshes

Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ens...

متن کامل

Feature preserving Delaunay mesh generation from 3D multi-material images

Generating realistic geometric models from 3D segmented images is an important task in many biomedical applications. Segmented 3D images impose particular challenges for meshing algorithms because they contain multimaterial junctions forming features such as surface patches, edges and corners. The resulting meshes should preserve these features to ensure the visual quality and the mechanical so...

متن کامل

Multiresolution Signal Processing on Meshes for Automatic Pathological Shape Characterization

We present a method based on multiresolution signal processing on meshes to create a thickness atlas. We applied this method to construct an atlas of bladder wall thickness. Bladder cancer is associated with increased bladder wall thickness. A thickness atlas helps to detect abnormal thickening in the bladder wall. Extracting inner and outer surface meshes from segmented images, we compute the ...

متن کامل

A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.

Finite element (FE) methods are widely used in electrical impedance tomography (EIT) to enable rapid image reconstruction of different tissues based on their electrical conductivity. For EIT of brain function, anatomically-accurate (head-shaped) FE meshes have been shown to improve the quality of the reconstructed images. Unfortunately, given the lack of a computational protocol to generate pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009